The Structure of a Uridine Derivative in the syn Conformation: 6,7-Dimethyl-N-1- β -D-ribofuranosyllumazine

By Wolfram Saenger,* Götz Ritzmann† and Wolfgang Pfleiderer†

Abteilung Chemie, Max-Planck-Institut für experimentelle Medizin, Hermann-Rein-Strasse 3, D-3400 Göttingen, Federal Republic of Germany

(Received 24 January 1977; accepted 18 March 1977)

6,7-Dimethyl-N-1- β -D-ribofuranosyllumazine (I), C₁₃H₁₆N₄O₆, is monoclinic, space group P2₁, with a = 6.909 (2), b = 19.093 (4), c = 10.806 (2) Å, $\beta = 96.65$ (3)°, Z = 4. The structure was determined by direct methods from 4286 diffractometer-measured X-ray data (Cu Ka, Ni filter) and refined to R = 5.9%. (I) is in the syn conformation which is stabilized by an intramolecular O(5')-H···O(2) hydrogen bond; the sugar is C(2')-endo puckered; the orientation about C(4')-C(5') is gauche,gauche. The heterocycles are folded by about 5° and stacked 3.45 Å apart along **a**; the riboses are connected by hydrogen bonds.

Introduction

The pteridine nucleoside 6,7-dimethyl-N-1- β -D-ribofuranosyllumazine (I, Fig. 1) was obtained by chemical synthesis (Ritzmann, Harzer & Pfleiderer, 1971). It can be considered as an analogue of uridine with the heterocycle augmented by a pyrazine ring system. As substitution in position 6 of the uracil ring usually leads to uridine derivatives in the *syn* conformation (Suck & Saenger, 1972) it was of interest to study (I) more closely. So far only a few pyrimidine nucleosides have

* To whom correspondence should be addressed.

[†] Fachbereich Chemie der Universität Konstanz, Konstanz, Federal Republic of Germany.

Fig. 1. Chemical formula and numbering scheme for 6,7-dimethyl-N-1- β -D-ribofuranosyllumazine.

been observed in this conformation, namely cytidine-2',3'-cyclophosphate (Coulter, 1973), 4-thiouridine (Saenger & Scheit, 1970), 3',5'-diacetyl-2'-deoxy-2'fluorouridine (Suck, Saenger, Main, Germain & Declercq, 1974), 6-methyluridine (Suck & Saenger, 1972). In this paper the structure of (I) is reported. A preliminary account has been given (Saenger, Ritzmann & Pfleiderer, 1972).

Experimental

(I) crystallized from aqueous solution as thick plates. Although the crystals show twinning with b^*c^* as twin plane, a single crystal could be cut. Crystallographic data were determined by photographic and diffractometer methods and are summarized in Table 1.

4286 intensities were collected on a Stoe four-circle diffractometer equipped with a Mo tube and graphite monochromator ($\lambda = 0.70926$ Å). The data were corrected for monochromator polarization effects ($\theta =$

Table 1. Crystallographic data

C₁₃H₁₆N₄O₆, $M_r = 324.3$ Monoclinic, space group $P2_1$ a = 6.909 (2) Å b = 19.093 (3) c = 10.806 (2) $\beta = 96.65$ (3)° $V_c = 1415.9$ Å³ $D_c = 1.522$ g cm⁻³ Z = 4Size of crystal: 0.2 × 0.3 × 0.5 mm Data measured: 4286 Radiation used: Mo Ka, $\lambda = 0.70926$ Å Graphite monochromator, $\theta = 6^{\circ}$ $R = \Sigma ||F_{0}| - |F_{c}|| / \Sigma |F_{0}| = 5.9\%$

Table 2. Fractional atomic coordinates $(\times 10^4)$

Standard deviations were determined from the least-squares correlation matrix and average 0.0004, 0.0001 and 0.0002 for x, y and z respectively.

	x	У	Z
C(1')A	3934	2048	-5874
C(2')A	5245	1511	-6434
O(2')A	7239	1656	-6197
C(3')A	4390	1548	-7809
O(3')A	5243	2144	-8305
C(A')A	2243	1653	_7744
O(4')A	2214	1072	_6533
O(4)A	2049	1972	-0333
C(S)A	971	990	-7637
U(5')A	1090	432	-7019
N(1)A	3/03	2003	-4330
C(2)A	3374	1372	-3993
O(2)A	3092	828	-4374
N(3)A	3344	1376	-2/19
C(4)A	3457	1938	-1924
O(4)A	3338	1862	-814
C(4a)A	3661	2608	-2556
N(5)A	3681	3205	-1887
C(6)A	3740	3803	2482
C(7)A	3744	3816	-3791
N(8)A	3779	3231	-4450
C (8a)A	3739	2624	-3837
C(11)A	3769	4469	-1729
C(12)A	3636	4491	-4521
C(1')B	1729	-1683	986
C(2')B	377	-1302	-1995
O(2')B	-1402	-1647	-2334
C(3')B	1721	-1271	-3033
O(3')B	1567	-1921	-3686
C(4')B	3748	-1188	-2325
O(4')B	3602	-1401	-1050
C(5')B	4561	-449	-2261
O(5')B	3262	31	-1764
N(1)B	1324	1607	317
C(2)B	1283	-946	833
O(2)B	932	-1336	4004
N(3)B	1155	-908	2092
C(4)B	1087	-1455	2918
O(4)B	1357	-405	237
C(4a)B	1219	-2145	2346
N(5)B	1253	-2716	3084
C(6)B	1495	-3333	2568
C(7)B	1750	-3383	1286
N(8)B	1654	-2820	556
C(8a)B	1390	-2201	1081
C(11)R	1534	_3973	3379
C(12)B	2193	-4067	698
H(1)A	4415	2528	-6051
U(2)A	5004	1033	- 6085
U(2)/4	4647	1112	8274
$\Pi(3)$	1702	1087	8417
U(5)	404	1107	-0417
$\Pi(J)A$	-404	911	-7703
$\Pi(0)A$	7400	2100	-0139
$\Pi(I)A$	7400	2100	-0320
$H(\delta)A$	4650	2220	-9020
П(9 <i>)</i> А Ц(10) А	1300	030	-02/0
	3208	910	-2324
	3930	4440	-880
H(12)A	2000	4/50	-1800
п(13)A	4980	4740	-1700
H(14)A	2720	4810	-4200
H(15)A	3110	4350	-5480
H(16)A	4800	4740	-4480
H(1) <i>B</i>	1737	-2198	-1200

Table 2 (cont.)						
H(2)B	141	-809	-1703			
H(3)B	1375	-872	-3609			
H(4) <i>B</i>	4694	-1505	-2697			
H(5)B	5839	-437	-1729			
H(6)B	4747	-285	-3120			
H(7)B	-1100	-2020	-2840			
H(8)B	1500	-1870	-4400			
H(9) <i>B</i>	2860	-150	-1050			
H(10)B	1131	-425	2443			
H(11)B	1250	-3900	4060			
H(12)B	700	-4260	2980			
H(13)B	2830	-4180	3500			
H(14)B	1500	-4400	870			
H(15)B	2270	-3960	-150			
H(16)B	3480	-4200	1050			

Table 3. Bond distances (Å)

Average standard deviations are 0.005 Å.

	Molecule A	Molecule B
Ribose		
C(1') - C(2')	1.538	1.535
C(2') - C(3')	1.536	1.537
C(3') - C(4')	1.527	1.524
C(4') - C(5')	1.513	1.518
C(5')–O(5')	1.432	1.429
C(4') - O(4')	1.461	1.451
O(4') - C(1')	1.418	1.411
C(2') - O(2')	1.400	1.406
C(3') - O(3')	1.415	1.424
Heterocycle		
C(1') - N(1)	1.466	1.474
N(1) - C(2)	1.378	1.381
C(2) - N(3)	1.381	1.376
N(3) - C(4)	1.372	1.379
C(4) - C(4a)	1.463	1.461
C(4a)-C(8a)	1.392	1.390
C(4a) - N(5)	1.350	1.350
N(5)-C(6)	1.314	1.321
C(6) - C(7)	1.414	1.420
C(7)–N(8)	1.327	1.329
N(8)-C(8a)	1.337	1.332
C(8a)-N(1)	1.407	1.400
C(2)–O(2)	1.217	1.213
C(4)–O(4)	1.221	1.222
C(6) - C(11)	1.510	1.503
C(7) - C(12)	1.509	1.500

 6° ; Arndt & Willis, 1966) and for geometrical factors, but not for absorption.

A sharpened Patterson map indicated that the lumazine ring systems of the two molecules in the asymmetric unit are arranged perpendicular to **a**, but their absolute position could not be determined. When MULTAN (Main, Germain & Woolfson, 1970) was tried with 446 E's > 1.5, only a chicken-wire-like distribution of peaks on planes perpendicular to **a** was obtained, but again the absolute position of the lumazine systems was obscured. The solution was finally achieved when all the Σ_1 contributions which

1

Table 4. Bond angles (°)

Average standard deviations are 0.3°.

	Molecule A	Molecule B
Ribose		
C(1') = C(2') = C(3')	99.9	99.6
C(2') = C(3') = C(4')	103.4	103.6
C(4') = C(5') = O(5')	113.3	111.6
C(4') = C(1') = C(2')	109.3	108.6
O(4') = O(1') = O(2')	105-5	105.6
C(1') = C(1') = C(2')	114.1	113.0
C(1) = C(2) = O(2)	114-1	114.3
C(3') = C(2') = O(2')	105.0	108.2
C(2) = C(3) = O(3)	103.9	110.5
C(4) = C(3) = O(3)	116.2	110.3
C(3) = C(4) = C(3)	10.2	106.4
C(4') = C(4') = C(5')	112.2	111 6
C(4) = C(3) = O(3)	109.4	106.6
$O(4^{\circ}) = O(1^{\circ}) = N(1)$	100.4	100.0
C(2) = C(1) = N(1)	117.0	11/•/
$C(4^{\circ}) = O(4^{\circ}) = C(1^{\circ})$	109.3	108.0
Heterocycle		
N(1)-C(2)-N(3)	116.4	117.1
C(2)-N(3)-C(4)	128.6	127.6
N(3)-C(4)-C(4a)	113.1	113.7
C(4) - C(4a) - C(8a)	120.0	120.1
C(4a) - C(8a) - N(1)	121.3	121.1
C(4a) - C(4) - O(4)	125.7	126.6
C(8a) - C(4a) - N(5)	121.0	121.4
C(4a) - N(5) - C(6)	118.1	117.7
N(5)-C(6)-C(7)	120.6	120.5
C(6) - C(7) - N(8)	121.6	121-4
C(7) - N(8) - C(8a)	117.5	117.7
C(4a) - C(8a) - N(8)	121-1	121.2
C(2) - N(1) - C(1')	120.8	119-4
C(8a) - N(1) - C(1')	119.1	119.1
O(2) - C(2) - N(1)	123.7	123.8
N(3) - C(2) - O(2)	119.8	119.1
N(3) - C(4) - O(4)	121.2	119.8
C(4) - C(4a) - N(5)	118.9	118.4
N(5)-C(6)-C(11)	117.9	118.2
C(11) = C(6) = C(7)	121.5	121.2
C(6) - C(7) - C(12)	122.2	121.7
N(8) - C(7) - C(12)	116.2	116.8
N(1)-C(8a)-N(8)	117.6	117.7
•• (•• •• (••)		

Table 5. Some torsion angles (A-B-C-D)

These are defined as zero if bonds A-B and C-D are cis-planar and counted positive if, looking along the central bond B-C, the far bond is rotated clockwise with respect to the near bond.

-0.245	0.231
+ 0.9029Y - 0.4157	7Z = 6.3729
-0.8915Y - 0.3338	3Z = 3.5214
from planes	
Molecule A	Molecule B
-0.0049	0.0245
-0.5906	-0.5872
0.0045	-0.0227
-0.0074	0.0375
0.0078	-0.0395
-	-0.243 + 0.9029 Y - 0.4157 - 0.8915 Y - 0.3338 rom planes Molecule A -0.0049 -0.5906 0.0045 -0.0074 0.0078

contained three very strong h00 reflexions were removed from the data set and MULTAN was run again with only five starting reflexions.

In the 32 phase sets, the figure of merit varied from 0.746 to 0.967, the sum of the α 's ranged from 19.35 to 23.47 and the Karle R values ranged from 37.5 to 32.2%; ψ_0 values were not determined. Although the variation between the correct and false solutions is not very pronounced, the set with the best consistency criteria allowed the deduction of the whole structure.

The atomic parameters were refined by full-matrix least-squares techniques (Busing, Martin & Levy, 1972). All the H atoms were located from difference maps. The final R was 5.9% for all 4286 data.*

* Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 32664 (27 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.

Table 6. Least-squares planes through the lumazine heterocycles and the best four ribose atoms

The planes are defined by atoms marked by a dagger and are based on a Cartesian system with X along a, Y along b and Zalong c*.

The lumazine heterocycles

Molecule A: 0.9955X - 0.0543Y - 0.0772Z = 2.0920Molecule B: 0.9968X + 0.0702Y + 0.0384Z = 0.7915

Deviations (Å) of atoms from planes

	Molecule A	Molecule B		
C(1')	0.156	0.091		
C(2')	1.090	-0.873		
$N(1)^{\dagger}$	0.099	-0.068		
$C(2)^{\dagger}$	-0.080	0.035		
N(3)†	-0.048	0.057		
C(4)†	0.004	0.006		
C(4a)†	0.049	-0:044		
C(8a)†	0.048	-0.039		
N(5)†	0.029	-0.036		
C(6)†	0.017	0.006		
C(7)†	-0.010	0.067		
N(8)†	-0.013	0.016		
O(2)	-0.242	0.006		
O (4)	-0.023	0.109		
C(11)	-0.035	0.015		
ain	0.045	0.001		

Table 7. Geometry of the hydrogen bonds

Donor	Acceptor	$d(D\cdots A)$	d(D-H)	$d(\mathbf{H}\cdots \mathbf{A})$	$\angle A \cdots H - D$	∠H– <i>D</i> …A	Symmetry operation of acceptor
O(2')A	O(3')B	2·847 Å	0·87 Å	2.00 Å	165°	11°	$1 - x_1 - \frac{1}{3} + v_1 - z_1$
O(3')A	O(4)A	2.923	0.84	2.15	151	21	x, y, 1 + z
O(5')A	O(2)A	2.800	0.90	2.06	138	29	Intramolecular
N(3)A	O(5')B	2.772	1.00	1.78	171	6	x, y, z
O(2')B	O(4')A	2.918	0.96	2.12	143	26	$1 - x, \frac{1}{2} + y, 1 - z$
O(2')B	O(3')B	2.703	0.96	2.16	101	46	1 + x, y, z
O(3')B	O(4)B	2.724	0.77	2.00	156	18	x, y, -1 + z
O(5')B	O(2)B	2.786	0.92	1.89	164	11	Intramolecular
N(3)B	O(5')A	2.779	1.00	1.80	166	9	x,y,z

Fig. 2. A stereo drawing of the unit-cell content viewed along a*.

Scattering factors were from International Tables for X-ray Crystallography (1962) and the structure amplitudes were given weights according to counting statistics with 1% allowance for machine instability (Stout & Jensen, 1968).

Results

The atomic parameters are presented in Table 2; geometrical data are given in Tables 3 to 6. Table 7 contains the data for the hydrogen-bonding interactions which are also illustrated in the stereoview (Fig. 2).

Discussion

Details of the structure of (I) have been described and compared with those obtained for lumazine (Norrestam, Stensland & Söderberg, 1972) and uracil (Voet & Rich, 1970). Therefore, only additional features and intermolecular interactions will be considered here.

The two molecules in the asymmetric unit display similar parameters (Table 5), and are both in the syn conformation with C(2)-N(1)-C(1')-O(4') at 72.1

and 60.8° . Similar values for the same angle were observed in 6-methyluridine, 69.6 and 69.4° (Suck & Saenger, 1972), 3',5'-diacetyl-2'-deoxy-2'-fluorouridine, 68.5° (Suck et al., 1974) and cytidine-2',3'cyclophosphate, 62.9 and 74.5° (Coulter, 1973); in 4-thiouridine this angle is increased considerably to 92.9° (Saenger & Scheit, 1970). In Table 8 these torsion angles are listed together with the conformational angles within the ribose moieties. Clearly the C(3')-endo envelope, which dominates in anti-nucleosides, is not preferred in syn-nucleosides but is replaced by a C(3')-endo, C(4')-exo twist form and by the C(2')-endo envelope which both appear to avoid unfavourable contacts between O(2) and the H atom attached to C(3'). The ribose puckering for cytidine-2'.3'-cyclophosphate (Coulter, 1973) differs from that of the other syn-nucleosides in Table 8, probably as a consequence of the fused phosphodiester group.

The lumazine heterocycles are not strictly planar: the normals to the pyrimidine and pyrazine rings form an angle of about 5°. From the data given in Table 6, it appears that the fold is along the line N(1)-C(8a)-C(4a)-N(5) rather than along C(8a)-C(4a).

The packing of the molecules follows the pattern frequently observed in nucleoside structures. The heterocycles are stacked 3.45 Å apart along **a**. These

Table 8. Comparison of the torsion angle χ and the ribose conformation in different syn-pyrimidine nucleosides

For angle definitions see Table 6.								
Molecule	χ	vo	v ₁	v ₂	v ₃	v_4	Sugar pucker	References
Title compound								
Molecule A	72·1°	-22·7°	36.7	-36·2°	24.6°	-1·4°	C(2')-endo	This work
Molecule B	60.8	-30.1	39.7	-34.0	18.2	7.2	C(2')-endo	
6-Methyluridine							. ,	
Molecule A	69.6	-25.8	36.9	-33.0	19.7	-3.6	C(2')-endo	Suck & Saenger (1972)
Molecule B	69.4	-18.6	34.3	-35.8	26.4	-5.2	C(2')-endo	······································
4-Thiouridine	92.4	-11.3 -	-14.9	33.1	-40.6	33.3	C(3')-endo, C(4')-exo	Saenger & Scheit (1970)
3',5'-Diacetyl-2'-deoxy-2'- fluorouridine	68.5	-12.1 -	-10.3	27.0	-34.5	29.7	C(3')-endo, C(4')-exo	Suck et al. (1974)
Cytidine-2',3'-cyclophosphate								
Molecule A Molecule B	62·9 74·5	-33·2 1·9	16•1 0•7	5·5 -0·7	–24∙4 1∙8	36.0 -2.3	O(1')- <i>endo</i> Planar	Coulter (1973)

columns of predominantly hydrophobic character are embedded into more hydrophilic zones built up by the ribose residues. These are linked by hydrogen bonds which also involve O(2), O(4) and the N(3)-H group of the lumazine heterocycles but not the pyrazine N(5)and N(8) atoms (Table 7).

References

- ARNDT, U. W. & WILLIS, B. T. M. (1966). Single-Crystal Diffractometry, p. 286. Cambridge Univ. Press.
- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1972). ORFLS. Report ORNL-TM-305. Oak Ridge National Laboratory, Tennessee.

COULTER, C. L. (1973). J. Amer. Chem. Soc. 95, 570-575.

International Tables for X-ray Crystallography (1962). Vol. III, pp. 201–209. Birmingham: Kynoch Press.

- MAIN, P., GERMAIN, G. & WOOLFSON, M. M. (1970). MULTAN, A System of Computer Programs for the Automatic Solution of Noncentrosymmetric Crystal Structures, Univs. of York/Louvain.
- NORRESTAM, R., STENSLAND, B. & SÖDERBERG, E. (1972). Acta Cryst. B28, 659–666.
- RITZMANN, G., HARZER, K. & PFLEIDERER, W. (1971). Angew. Chem. 83, 975–976.
- SAENGER, W., RITZMANN, G. & PFLEIDERER, W. (1972). Eur. J. Biochem. 29, 440–443.
- SAENGER, W. & SCHEIT, K. H. (1970). J. Mol. Biol. 50, 153-169.
- STOUT, G. H. & JENSEN, L. H. (1968). X-ray Structure Determination, p. 457. London: Macmillan.
- SUCK, D. & SAENGER, W. (1972). J. Amer. Chem. Soc. 94, 6520-6526.
- SUCK, D., SAENGER, W., MAIN, P., GERMAIN, G. & DECLERCQ, J.-P. (1974). Biochim. Biophys. Acta, 361, 257–265.
- VOET, D. & RICH, A. (1970). Progr. Nucleic Acid Res. Mol. Biol. 10, 183–285.

Acta Cryst. (1977). B33, 2993–2996

Structure Cristalline du Bis-thioacétate de Nickel β Picoline (1:2) Forme a

PAR M. M. BOREL ET M. LEDÉSERT

Laboratoire de Cristallographie et Chimie du Solide LA 251, Laboratoire de Chimie Minérale B, Laboratoire de Cristallographie Minéralogie, UER des Sciences, Université de Caen, 14032 Caen CEDEX, France

(Reçu le 11 mars 1977, accepté le 18 mars 1977)

Ni(CH₃COS)₂. 2C₆H₇N (*a* phase) is triclinic, space group $P\bar{1}$, with two molecules in a unit cell of dimensions a = 8.596 (2), b = 14.337 (2), c = 8.279 (3) Å, $\alpha = 92.54$ (2), $\beta = 114.04$ (2), $\gamma = 87.95$ (1)°. The structure was solved by the heavy-atom method from 4330 intensities collected with an automatic diffractometer. The final *R* is 0.032. The coordination of the Ni²⁺ ion is six. The O and N atoms are *cis*, while S atoms are *trans*.

Dans le cadre d'une étude thermochimique et structurale des thioacétates métalliques (Bernard, Borel & Ledésert, 1973; Borel & Ledésert, 1975), nous avons déterminé la structure du thioacétate de nickel solvaté par la pyridine (Borel, Geffrouais & Ledésert, 1976), et la β et la γ picoline (formes b) (Borel, Geffrouais & Ledésert, 1977*a*,*b*).

L'intérêt des résultats réside surtout dans la dis-